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The influence of fluid thermal sensitivity on the centrifugal flow instabilities in
pressure-driven (Dean) and drag-driven (Taylor–Couette) Newtonian shear flows is
investigated. Thermal effects are caused by viscous heating or an externally imposed
temperature difference between the outer and inner cylinders, �T ∗, or a combination
of both. In all cases considered, the maximum temperature difference within the
gap is small enough such that the base-state velocity profile and consequently the
distribution of angular momentum are practically unchanged from those in the iso-
thermal flow. The base-state temperature gradient can be approximated as a linear
superposition of �T ∗/d , where d is the gap width, and that caused by viscous heating.
Numerical linear stability analysis shows that when �T ∗ = 0, viscous heating causes
the critical Reynolds number, Rec, to be greatly reduced when the Nahme number,
defined as the product of the Brinkman number, Br, and the dimensionless activation
energy associated with the fluid viscosity, ε, is O(α2/Pr) where α and Pr denote the
dimensionless critical axial wavenumber and Prandtl number respectively. Since α2 is
O(10) and typical Pr values for thermal sensitive liquids could be O(104), appreciable
flow destabilization occurs even when Na is O(10−3). In the absence of viscous heating,
an externally imposed temperature gradient can lead to significant reduction in Rec

when S ≡ (ε�T ∗)/T ∗
1 < 0 and |S| is O(α2/Pr), where T ∗

1 denotes the temperature of
the inner cylinder. The numerical linear stability analysis results are explained based
on a simplified model derived from the linearized governing equations by invoking the
narrow-gap approximation. This model shows that the thermo-mechanical coupling,
arising from the convection of the base-state temperature gradient by radial velocity
perturbation, amplifies the temperature fluctuations within the flow by a factor propor-
tional to Pe/α2 where Pe denotes the Péclet number. This results in the reduction of
local viscosity. Hence, the rate of dissipation of the velocity perturbations decreases
causing the centrifugal instability to occur at lower values of the Reynolds number
compared to the isothermal flow. Thermo-mechanical destabilization caused by vis-
cous heating for �T ∗ = 0 can be quantified by a scaling law of the form Λ =
[1 + Pr c1 Na/α2]−1/2 where Λ is the ratio of the critical Reynolds number of the
non-isothermal flow to that of the isothermal one and c1 is a flow-dependent constant.
Similarly, in the absence of viscous heating and for �T ∗ < 0, Λ = [1 + Prc2S/α2]−1/2,
where c2 is a flow-dependent constant. When �T ∗ > 0 and viscous heating are present,
a numerical linear stability analysis shows that Λ ∝ Nak where k < 0 and it is
dependent on �T ∗ and the flow type. Finally, we perform a nonlinear stability analysis
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for the Dean flow which shows that the bifurcation is supercritical for both stationary
and time-dependent modes of instability.

1. Introduction
We present a theoretical investigation of the effect of temperature-dependent fluid

viscosity on the stability of curvilinear shear flows of Newtonian fluids confined
between two infinitely long concentric cylinders driven by either a constant azimuthal
pressure gradient or relative rotation of the cylinders. It has long been established that
centrifugal instabilities occur in such flows: Taylor (1923) first considered drag-driven
flow between two coaxial cylinders (Taylor–Couette flow) and later Dean (1928)
first studied viscous flow through a curved channel driven by a streamwise pressure
gradient (Dean flow). As reported by Taylor (1923) and Dean (1928), in the limit
of narrow gaps, the unidirectional base flow becomes unstable when Rec(d/R1)

1/2

exceeds a critical value of 41 and 36 for Taylor–Couette and Dean flows respectively,
where Rec denotes the critical Reynolds number, d is gap width and R1 is the radius
of the inner cylinder.

Recently, Al-Mubaiyedh, Sureshkumar & Khomami (1999, 2002) performed a
stability analysis to ascertain the role of thermal effects induced by viscous dissipation
on the Taylor–Couette flow instability. Their work focused on liquids that possess
(a) high viscosity (O(1) Pa s) at room temperature and (b) large activation energy
(O(102) kJ mole−1) associated with the (Arrhenius) temperature dependence of visco-
sity (e.g. glycerin, glycerin/water mixture, polydimethylsiloxane oligomers). An appro-
priate measure of the thermal sensitivity of the fluid is the Nahme–Griffith number, Na,
which is the ratio of the temperature rise due to viscous heating to the temperature
rise necessary to make an O(1) change in the viscosity. It can be related to the
Brinkman number, Br, via the dimensionless activation energy associated with the
fluid viscosity, ε, as Na = εBr. By definition, Br represents the ratio of the rates of
viscous heating to conduction. Al-Mubaiyedh et al. (1999, 2002) predicted that even
temperature non-homogeneities as small as 1–2 K within the gap, generated by viscous
heating, could lead to dramatic destabilization of the flow, e.g. the critical Reynolds
number in the presence of thermal effects could be an order of magnitude smaller
than the isothermal one. In addition, the temporal characteristics of the secondary
flow were found to depend on the thermal boundary conditions imposed. White &
Muller (2000, 2002a) have performed flow visualization experiments to investigate the
effect of viscous heating on the stability of Taylor–Couette flow of viscous thermally
sensitive liquids. Their experimental observations have corroborated the theoretical
predictions of Al-Mubaiyedh et al. (1999, 2002). Theoretical predictions of the critical
Reynolds number are within 40% of the experimentally reported ones (Thomas,
Sureshkumar & Khomami 2003). Since the temperature variations within the gap are
small (∼1 K), typical values of the Grashof number are �1. Hence, buoyancy effects
are neglected in this analysis.

For Taylor–Couette flow, Al-Mubaiyedh et al. (2002) performed detailed analyses
of the influence of thermal effects on the steady-state pressure distribution and
kinematics as well as the unstable eigendisturbances to understand qualitatively the
mechanism of the flow destabilization caused by viscous heating. They found that the
coupling between velocity perturbations and the base-state temperature gradient can
give rise to spatially non-homogeneous temperature fluctuations within the gap. For
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thermally sensitive fluids, such thermal fluctuations could reduce the local viscosity
leading to decreased dissipation of velocity disturbances. This results in the loss of
stability of the base Couette flow.

While the onset and nonlinear evolution of thermo-mechanical instabilities in
Taylor–Couette flow have been established by experimental and theoretical investiga-
tions (e.g. White & Muller 2000, 2002a, b; Al-Mubaiyedh et al. 2002; Thomas et al.
2003), a quantitative model for the thermo-mechanical coupling that causes the
observed instabilities has not yet been developed. For instance, Nahme number
values at which the thermal effects start to have an appreciable effect on flow stability
are much smaller than unity, e.g. refer to figures 1(a) and 1(b) in Al-Mubaiyedh et al.
(2002) which show that Rec is significantly reduced even when 10−2 <Na < 10−1.
Although an empirical form for the Rec–Nac relationship has been suggested based
on experimental data and numerical linear stability analysis (White & Muller 2002b;
Thomas et al. 2003), the precise mechanism by which the Prandtl number, Pr, and the
axial wavenumber of the critical disturbance, α, influence the Rec–Nac relationship
is unknown. In addition, even in the absence of viscous heating, externally imposed
temperature gradients could influence flow stability if the fluid is thermally sensitive.
It is not clear how an external temperature gradient influences Rec when viscous
heating plays a negligible role in determining the thermal profile. Moreover, it is not
known whether similar instabilities exist in other types of flows that have served as
classical paradigms of stability and nonlinear hydrodynamics. Especially of interest
is Dean flow (Dean 1928), which has been used as a model for pressure-driven flow
through curved channels. Note that Taylor–Couette flow is drag-driven, i.e. it is
generated by the relative rotation of the cylinders. Hence, explicit external forcing
by a pressure gradient is absent. Therefore, it is instructive to examine whether the
thermo-mechanical instabilities observed in Taylor–Couette flow also exist in pressure-
driven flows. Based on the above-mentioned motivations, we perform stability analysis
of Dean and Taylor–Couette flows with the objective of developing a quantitative
mechanistic understanding of thermo-mechanical coupling in curvilinear shear flows
of Newtonian liquids. Based on approximate analytical solutions valid in the narrow-
gap limit for the base state, a simplified model that relates Re, Na, Pr and α at critical
conditions is derived. This model is used to explain the predictions of the numerical
stability analysis and develop scaling laws that relate Rec and Nac. We also perform
a nonlinear stability analysis for Dean flow to determine the evolution of finite-
amplitude disturbances for Re >Rec. These results are compared with analogous ones
for Taylor–Couette flow.

This paper is organized as follows. Problem formulation, dimensionless parameters
and solution procedure are presented in § 2. Results and discussion are presented in
§ 3. Specifically, the analysis of the base state is presented in § 3.1, numerical linear
stability analysis results in § 3.2, a discussion of the mechanism and scaling law in § 3.3
and nonlinear stability analysis in § 3.4. In § 4, we present our conclusions. Appendix C
contains the details of the derivation of the scaling laws.

2. Problem formulation, dimensionless parameters and solution procedure
We consider the flow of a highly viscous Newtonian fluid confined between two

stationary coaxial infinitely long cylinders of radii R1 and R2, where subscripts 1 and 2
correspond to the inner and outer cylinders respectively. Dean flow is driven by a
constant azimuthal pressure gradient, G∗. The equations governing the base flow are
non-dimensionalized using d = R2 − R1, average steady-state velocity V, d/V, ρV 2 as
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the respective length, velocity, time and pressure scales, where ρ denotes the fluid
density. Note that V is O(

√
G∗/ρ). It is computed a posteriori from the steady-state

solution. For Taylor–Couette flow, V is the velocity of the rotating inner cylinder
consistent with our earlier work (Al-Mubaiyedh et al. 2002). The dimensionless
temperature, T , is scaled with respect to a reference temperature T ∗

0 which is taken to
be equal to the inner cylinder temperature T ∗

1 . Specifically, we set T ∗
0 = T ∗

1 = 298.15 K.
The dimensionless equation of continuity for an incompressible fluid is given by

∇ · u = 0. (1)

In dimensionless form, the equation of motion is given by[
∂u
∂t

+ u · ∇u
]

= −∇p + lK
1

rδ
êθ +

1

Re
∇ ·
[
eε(1/T −1)κ

]
, (2)

where κ ≡ ∇u + ∇ut , the Reynolds number Re ≡ ρV d/η0, p is the hydrodynamic
pressure, δ ≡ d/R1, lK is 1 or 0 for Dean or Taylor–Couette flows respectively. The
fluid viscosity is related to the temperature through an Arrhenius relationship with ε

representing the dimensionless activation energy given by �H/RT ∗
0 , where �H and

R are the dimensional activation energy and the universal gas constant respectively.
The dimensionless energy equation can be written as

Pe

[
∂T

∂t
+ u · ∇T

]
= ∇2T +

Br

2
eε(1/T −1)κ : κ, (3)

where the Brinkman number, Br ≡ η0V
2/kT ∗

0 , and the Péclet number Pe ≡ Re Pr. Pr is
the Prandtl number defined as Pr ≡ η0Cp/k, where Cp and k are the specific heat
capacity at constant pressure and thermal conductivity of the fluid respectively eva-
luated at T ∗

0 . The Nahme–Griffith number is defined as Na ≡ |∂η/∂T ∗|T ∗
0
V 2/k = ε Br.

In the above governing equations, we have neglected buoyancy effects, since the
Grashof number, representing the ratio of buoyancy to viscous forces, is less than
0.02 in the parameter range considered in this study.

The base-flow momentum and energy equations can be expressed as

lK
1

rδ
+ eε(1/T −1)

[
d

dr

(
1

r

d

dr
(ruθ )

)
− ε

T 2
r

d

dr

(uθ

r

) dT

dr

]
= 0, (4)

1

r

d

dr

(
r
dT

dr

)
+ Br eε(1/T −1)

[
r

d

dr

(
uθ

r

)]2
= 0. (5)

A steady-state solution can be obtained using perturbation analysis numerically by
solving equations (4) and (5), along with no-slip boundary conditions for azimuthal
velocity and Dirichlet boundary conditions for temperature at the cylinder walls (see
§ 3.1). Chebyshev spectral collocation method has been used to obtain a numerical
solution (Al-Mubaiyedh et al. 2002). Linear stability analysis is based on the classical
normal-mode perturbation analysis, where infinitesimally small disturbances with axial
wavenumber, α, and azimuthal wavenumber, ξ , are superimposed onto the base solu-
tion, i.e. X = X ss + Re [X̂(r) eiξθ+iαz+σ t ], where X represents the vector of dependent
variables (p, ur, uθ , uz, T ), X ss(uθss, Tss) represents the steady-state solution, X̂(r)
denotes the radial dependence of the perturbation and σ = σR + iσI denotes the
corresponding eigenvalues. Substitution of the normal-mode expansion in equations
(1), (2) and (3), and the boundary conditions, and further linearization about the
base state, leads to a complex differential eigenvalue problem (DEVP). We use the
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Figure 1. Comparison between perturbation series solution (solid line) and numerical results
(symbols) for base state. (a) Dean flow (Na =0.02), (b) Taylor–Couette flow (Na=0.25).
R1/R2 = 0.912, �T ∗ = 0. Pr= 7975.16.

Chebyshev collocation technique to reduce the DEVP to a generalized algebraic
eigenvalue problem of the type AX̂ = σBX̂ (Al-Mubaiyedh et al. 2002).

3. Results and discussion
3.1. Base-flow solution

In this section, analytical solutions for the steady-state velocity and temperature
profiles in Dean and Taylor–Couette flows are presented in the form of a regular
perturbation series for small values of Br (Br � 1). Similar methods have been used
in the literature to obtain asymptotic base-state solutions in the presence of viscous
heating (e.g. Papathanasiou 1997) for the Taylor–Couette flow with stationary inner
and rotating outer cylinders. In the case of Dean flow, for �T ∗ = 0, the solutions to
first-order accuracy in Br =Na/ε are given by

uθss = u0 +
Na

ε
u1 + O

((
Na

ε

)2)
, (6)

θss ≡ T ∗
ss − T ∗

0

T ∗
0

= θ0 +
Na

ε
θ1 + O

((
Na

ε

)2)
, (7)

u0 = −C1

2r
− r ln r

2δ
+ C2r, (8)

u1 =
εC3

1

16r3
− ε(C1C3 + 2C1C4 + 2C5 + 2C1C3 ln r)

4r
−

ε
(
3C2

1 + 4C2
1 ln r + 4C2

1 (ln r)2
)

16δr

− εC1r(3 ln r + 4(ln r)3)

48δ2
− εr(2C4 ln r + C3(ln r)2)

4δ
+

εr3

64δ3
+ εC6r, (9)

θ0 = 0, (10)

θ1 = − C2
1

4r2
+

C1(ln r)2

2δ
− r2

16δ2
+ C3 ln r + C4, (11)

where C1, C2, C3, C4, C5 and C6 are given in Appendix A. The subscript ‘ss’ denotes
steady state. The above series solution compares well with the numerical one up to
Na ≈ 0.02 as shown in figure 1(a). While the first-order solution for the velocity is
a good approximation, higher-order terms need to be included in order to obtain a
better comparison for the temperature for Na> 0.02. We have not performed such
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an analysis as the range 0 <Na � 0.02 spans a major portion of the Na-space where
significant reduction in the critical Reynolds number is predicted (see § 3.2).

By employing a similar approach, a series solution for Taylor–Couette flow for
�T ∗ = 0 can be expressed in terms of equations (6) and (7) with (ζ ≡ R1/R2):

u0 =
(ζ 2δ2r2 − 1)

(ζ 2 − 1)δ2r
, (12)

u1 =
ε

2(ζ 2 −1)3δ4r3
+

(
2

(ζ 2 −1)2
−2A− 4

(ζ 2 −1)3

)(
ε

4δ2r ln ζ

)
+

ε ln (rδ)

(ζ 2 −1)2δ2r ln ζ
+εBr,

(13)

θ0 = 0, (14)

θ1 =
(δ2r2 − 1)

(ζ 2 − 1)2δ2r2
− ln (rδ)

(ζ 2 − 1) ln ζ
, (15)

where A, B are given in Appendix A. The analytical series solution compares well
with the numerical solution as shown in figure 1(b). For Na> 0.25, higher-order terms
are required to obtain an accurate solution for the temperature while a first-order
solution is a good approximation for the velocity for Na � 1.

Similar perturbation solutions can be obtained for non-zero values of �T ∗ as well.
However, as evident from equations (6)–(15), the analytical forms of uθss and θss

cannot be used in a straightforward manner to perform a linear stability analysis.
Hence, subject to a posteriori validation by comparison with numerical results, we
use the following expressions for the steady-state profiles required in the approximate
linear stability analysis presented for narrow gaps in § 3.3:

uθss ≈ uθ,iso =

{
x(1 − x) (Dean),

1 − x (Taylor–Couette),
(16)

where x ≡ r − r1, 0 � x � 1 and r1 ≡ R1/d .
It is evident from figures 2 and 3 that the temperature profile consists of two

contributions, one due to the externally imposed gradient �T and the other caused
by viscous heating alone with �T = 0. The steady-state energy equation has the
following form in the narrow-gap limit:

d2Tss

dx2
= −Br

[
−uθss

x
+

duθss

dx

]2
. (17)

For Br � 1, the right-hand side can be treated as a source term. Hence,

Tss = Th(x) + Tp(x), (18)

where Th(x) and Tp(x) are the homogeneous and particular solutions respectively such
that Tp(x) = 0 at x =0 and 1. This decomposition gives

Th(x) = 1 + �T x. (19)

Further, by comparing equations (7), (18) and (19), Tp(x) should be given by the
narrow-gap approximation of θ1. As shown in Appendix C or § 3.3, the specific form
of Tp(x) is not required for deriving scaling laws between Rec and Nac. Hence, we let

Tp(x) =
Na

ε
g(x). (20)
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Figure 2. Steady-state solution for Dean flow, uθss (open symbols) and Tss (closed symbols).
(a) �T ∗ = 0: �, �, Na = 0.002; �, �, Na = 0.011; �, �, Na = 0.018. (b) �T ∗ =1K: �, �, Na =
0.061; �, �, Na = 0.082; �, �, Na = 0.104. (c) �T ∗ = −1 K: �, �, Na = 0.016; �, �, Na = 0.087;
�, �, Na = 0.125. Dashed line represents the isothermal steady-state velocity. R1/R2 = 0.912,
Pr= 7975.16.
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Figure 3. Steady-state solution for Taylor–Couette flow, uθss (open symbols) and Tss (closed
symbols) at �, �, Na = 0.249 and �, �, Na = 0.1. (a) �T ∗ = 0. (b) �T ∗ = 1 K. (c) �T ∗ = −1K.
Dashed line represents the isothermal steady-state velocity. R1/R2 = 0.912, Pr= 7975.16.
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0.104; �, Na = 0.25; �, Na = 0.1). (b) �T ∗ = −1 K (�, Na = 0.016; �, Na = 0.125; �, Na =
0.25; �, Na = 0.1). Symbols and lines represent numerical and analytical solutions res-
pectively. R1/R2 = 0.912, Pr= 7975.16.

From a numerical fit, as shown in figure 4, one can approximate g(x) as

g(x) =

{
A1x(1 − x) (Taylor–Couette),

x(B1x
3 + B2x

2 + B3x + B4) (Dean),
(21)

where the constants A1 ≈ 0.5 (Turian 1965; Bird, Armstrong & Hassaguer 1987),
B1 ≈ −10, B2 ≈ 19.9, B3 ≈ −15 and B4 ≈ 5.1. Note that in the absence of an externally
imposed temperature gradient, i.e. �T = 0, equations (18)–(20) imply that the tempera-
ture rise due to viscous heating is O(T ∗/ε), consistent with the analysis of Pearson
(1978).

3.2. Linear stability analysis

In this subsection, numerical results from a linear stability analysis are presented
by using the numerically obtained steady-state profiles. As a model fluid we choose
glycerin, as used in previous theoretical (Al-Mubaiyedh et al. 2002) and experimental
(White & Muller 2000, 2002a, b) studies. For T ∗

0 = 298.15 K, the values of viscosity,
density, specific heat capacity Cp and thermal conductivity k are 0.94 Pa s, 1261 kg m−3,
2418 J kg−1 K−1 and 0.285 Wm−1 K−1 respectively. Further, ε = 24.88 and Pr (at T ∗

0 ) =
7975.16. We primarily use the gap ratio (R1/R2) of 0.912 used in previous Taylor–
Couette experiments (White & Muller 2002a, b) although the influence of gap width
is examined. Analysis is limited to a maximum �T ∗ of 1.5 K to minimize buoyancy
effects.

In order to quantify the effect of viscous heating on the stability characteristics
we use the parameter Λ defined as the ratio of the critical Reynolds number of the
non-isothermal flow to that of the isothermal one. Plots of Λ vs. Na for Dean flow
are shown in figure 5(a) for �T ∗ = 0 and 1 K and for 0 � ξ � 2. The most dangerous
mode of disturbance is observed to be axisymmetric (ξ =0) and stationary (σI = 0).
An order-of-magnitude reduction in the critical Reynolds number is predicted for
O(1) values of Na, e.g. for �T ∗ = 0, Λ ≈ 0.094 for Na= 0.2. As expected, as Na → 0, the
critical conditions approach the isothermal limit (ξ = 0, αc =4.0, Rec(d/R1)

1/2 = 40.81).
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Figure 5. (a) Λ vs. Na. �, ξ = 0, �T ∗ = 0; �, ξ = 0, �T ∗ = 1 K; �, ξ = 1, �T ∗ = 0; ×, ξ = 1,
�T ∗ = 1 K; �, ξ = 2, �T ∗ = 0. R1/R2 = 0.912, Pr= 7975.16 (Dean flow). (b) αc vs. Na and σIc vs.
Na. R1/R2 = 0.912 (Dean flow).

The Na value for which the precipitous decrease in Rec is initiated depends on the
thermal boundary conditions. For �T ∗ = 0, an appreciable reduction in Rec can
be seen even when Na is O(10−2). This result is analogous to that reported by Al-
Mubaiyedh et al. (2002) for Taylor–Couette flow where significant flow destabilization
occurs for O(10−2) values of Na. This is further explored in § 3.3. When �T ∗ = 1 K, the
most dangerous mode remains axisymmetric. However, the temporal characteristics
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are time-dependent for Na � 0.093. For Na � 0.093 a stationary mode of instability
is observed (figure 5a). Hence, thermal boundary conditions and Na influence the
selection of the critical disturbance. In figure 5(b), the critical axial wavenumber,
αc, (for ξ =0) is plotted for �T ∗ = 0 and �T ∗ = 1 K. For �T ∗ = 0, αc is practically
constant at 4.0 for Na< 0.0002 and decreases to 3.31 for O(1) Na. For �T ∗ = 1 K,
αc remains nearly constant at 4.05 for Na< 0.03, and at Na ≈ 0.093, there is a
sharp increase in αc to ≈ 5.8 when the change from a time-dependent to a stationary
eigensolution occurs as shown in figure 5(a). The critical frequency, σIc , corresponding
to the time-dependent instability predicted for �T ∗ = 1 K is also plotted in figure 5(b).
The temporal period associated with the eigenfunctions, 2π/σIc , can be found to be
relatively large (O(102)–O(105)) with respect to the time scale d/V . However, the time
period is more comparable to the thermal time scale (d2/αt ) where αt is the thermal
diffusivity defined as k/ρCp . For instance, for Na= 0.084, the ratio of the time period
of the oscillatory flow to the thermal time scale is 0.11.

The results reported in figures 5(a) and 5(b) are qualitatively similar to those
obtained for Taylor–Couette flow (denoted by T–C) as shown in figures 6(a) and 6(b).
However, the critical axial wavenumbers in Dean flow are larger than those in Taylor–
Couette flow. Note that the results for Taylor–Couette flow are in agreement with
those reported by Al-Mubaiyedh et al. (2002).

In figure 7, Rec is plotted as a function of Na for two gap ratios, 0.85 and 0.95, for
the axisymmetric mode of disturbance for three different gap temperature differences,
0, 1K, 1.5 K. For a given gap width, the stationary mode corresponding to �T ∗ = 0
becomes the most dangerous one for Nahme number greater than O(10−4). As the
temperature difference between the outer and inner cylinders is raised from 0 to 1.5 K,
the critical mode changes from time-dependent to stationary for values of Na> 0.1. As
in the case of isothermal flows the critical Reynolds number decreases with increasing
gap width.

Snapshots of the secondary flow structures for the Dean and Taylor–Couette flows
are presented in figures 8 and 9 respectively for different cases. Note that the radial
velocity eigenfunctions are normalized with respect to the maximum value. The
cellular structures corresponding to the critical eigenvalue for �T ∗ =0 are similar to
those observed in the isothermal case. Oscillatory solutions observed for �T > 0 for
Dean flow show more complicated structure with localization near the outer wall.

3.3. Scaling principles and mechanism of thermo-mechanical instability

We now focus on the mechanism of the coupling between the energy and momentum
equations that is responsible for the thermo-mechanical instability. Toward this end,
a simplified linear stability model is developed for the stationary mode of instability
for Br � 1 valid in the narrow-gap limit. Based on this model, a scaling law that
relates Rec, Nac and Pr is developed to interpret the numerical results.

In order to guide the development of the simplified model we compute the onset
conditions after turning off/on various terms in the linearized equations of motion
and energy, which are given below for an axisymmetric mode of disturbance:

∂T̂

∂t
= − û · ∇Tss︸ ︷︷ ︸

I

+
1

Pe
∇2T̂ +

Br

2Pe
eε(1/Tss−1)

(
κ ss : ∇û + κ̂ : ∇uss − ε

T 2
ss

κ ss : ∇ uss T̂

)
︸ ︷︷ ︸

II

, (22)
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Re

[
∂ û
∂t

+ û · ∇uss + uss · ∇ û
]

= − Re ∇P + eε(1/Tss−1)


∇2û − ε

T 2
ss

∇2uss T̂︸ ︷︷ ︸
III




− ε

T 2
ss

eε(1/Tss−1)


κ ss · ∇T̂︸ ︷︷ ︸

IV

+ ∇Tss · κ̂︸ ︷︷ ︸
V

−
(
ε/T 2

ss + 2/Tss

)
(∇Tss · κ ss)T̂︸ ︷︷ ︸

VI


, (23)
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Terms turned off Rec αc

All terms due to thermal effects 131.36 4.0
None (non-isothermal) 50.72 3.45
I 130.43 4.0
II 50.72 3.45
III 69.35 2.44
IV 51.04 3.35
III, IV 129.43 4.0
IV, V, VI 50.95 3.45

Table 1. Influence of the various terms on the critical conditions.

where the hat symbol refers to the perturbation variables. The expanded forms of
equations (22), (23) are given in Appendix B. A summary of the critical conditions
obtained from the above procedure is tabulated in table 1. All the calculations
reported are for Na ≈ 0.01 for �T ∗ =0 and ξ = 0 (R1/R2 = 0.912). From the table, it
is clear that terms I (û · ∇Tss), III (ε/T 2

ss∇2uss T̂ ) and IV (κ ss · ∇T̂ ) greatly influence
the predictions of the critical conditions since turning these terms off result in pre-
dictions that are close to the isothermal case (Rec =131.36, αc = 4.0). Hence, the
underlying mechanism driving the destabilization results from the coupling of the
perturbation radial velocity and the base-state temperature gradient, i.e. the term
û · ∇Tss (= ûr · dTss/dr) appearing in the energy equation. It is evident from the
discussion in § 3.1 that uθss ≈ uθss,iso, i.e. the angular momentum distribution is
practically unchanged. However, as pointed out by Al-Mubaiyedh et al. (2002), the
temperature enhancement reduces the local viscosity and lowers the ability of the fluid
to dampen velocity perturbations. This is further demonstrated by the observation that
for negative values of �T ∗, destabilization is very pronounced even in the absence of
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viscous heating (Br = 0) as shown in figure 10. Specifically, when �T < 0, the largest
reduction in viscosity occurs near the inner cylinder. Hence the radial velocity pertur-
bations in this region encounter relatively lower dissipative forces.It can also be seen
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from figure 10 that in the limit as Br → 0, positive values of �T have only a very mild
destabilizing effect on the flow. However, the most dangerous disturbance is time-
dependent for �T > 0. As shown in figures 5(a) and 6(a), this mode of disturbance is
severely destabilizing in the presence of viscous heating.

A simplified quantitative model of the proposed mechanism can be developed:
see Appendix C for the derivation. Specifically, the coupling between the radial
perturbation velocity and the base-state temperature gradient causes an amplification
of the temperature perturbation (T̂ ) according to the following relationship obtained
by re-arranging equation (C 13):

T̂ = −Pe

α2

dT ss

dr
ûr . (24)

Equation (24) implies that the convection of base-state temperature gradient by radial
velocity perturbations results in enhanced thermal fluctuation within the flow since
Pe/α2 is �1 for high-Pr liquids. Substituting for T̂ and ûr , and using normal-mode
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Figure 9. Radial velocity contour plots at critical conditions for Taylor–Couette flow at
�T ∗ = 0 (Na = 0.025, Rec = 80.62, αc = 2.89 (stationary)), �T ∗ =1K (Na =0.1, Rec = 76.08,
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expansions, one obtains(
T̂ R +

Pe

α2

dTss

dr
ûr,R

)
cos(αz) −

(
T̂ I +

Pe

α2

dTss

dr
ûr,I

)
sin(αz) = 0, (24a)

where subscripts ‘R’ and ‘I ’ denote the real and imaginary parts of the corresponding
eigenfunction respectively. Multiplying equation (24a) by r cos(αz)(r sin(αz)) and
integrating in the domain (r1 � r � r2, 0 � z � 2π/α) gives∫ r2

r1

(
T̂ R(I ) +

Pe

α2

dTss

dr
ûr,R(I )

)
r dr = 0. (24b)

The above assertion is verified by using results obtained from the numerical linear
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stability analysis. As shown in figure 11, the integrand

f (r) ≡ T̂ R +
Pe

α2

dTss

dr
ûr,R

is approximately antisymmetric with respect to the mid-plane of the gap for the
Taylor–Couette flow. Although the analogous curve corresponding to Dean flow is
not antisymmetric, it passes through both negative and positive values such that the
area under the curve remains small. Numerical integration shows that∫ r2

r1

rf (r) dr �

√∫ r2

r1

rf 2(r) dr.
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Hence, the above mechanism is equally valid for both Taylor–Couette and Dean flows.
Further, as shown in Appendix C, equation (24) can be combined with the linearized
momentum equation to obtain a master equation valid for both Taylor–Couette and
Dean flows:

d2ûr

dr2
+

[
α2 +

2ReUU ′

α2r

]
ûr =

2ReUKΘ ′

α2r

[
U ′ dûr

dr
+ U ′′ûr

]
(equation (C 13)), where K ≡ εPe/(Tssα)2, Θ ′ ≡ dTss/dr , U ≡ uθss , U ′ ≡ u′

θss and U ′′ ≡
u′′

θss .
Use of equation (16), Θ ′ = S + cNa and S = ε�T in (C 13) results in the following

scaling law for �T = 0 (see the Appendix for derivations leading to equations (C 13),
(C 24) and (C 31)):

Λ =
1[

1 − PrcNa
/(

T 2
ssα

2
)]1/2

, (25)

where c < 0 is a flow-dependent constant that can be determined by fitting the
numerical results obtained for Λ to equation (25). Equation (25) can be written in
the following form: (

1

Λ2
− 1

)
α2

Pr
= −cNa

T 2
ss

. (26)

From a numerical fit of equation (26) shown in figure 12 to a linear equation of the
form y = a x, where

y =

(
1

Λ2
− 1

)
α2

Pr
, x = Na, a ≡ − c

T 2
ss

, (27)

we obtain a =0.08 and 0.8 for Taylor–Couette and Dean flows respectively.
In general, as discussed in § 3.2, for non-zero values of �T the most dangerous

eigenvalue is time-dependent. For Taylor–Couette flow with non-zero �T , the scaling
law can be written as

Λ =




1[
1 −
(
Pr
/
T 2

ssα
2
)
(S + c1Na)

]1/2
(Taylor–Couette flow),

1[
1 −
(
c3Pr/T 2

ssα
2
)
(S + c2Na)

]1/2
(Dean flow)

(equations (C 24) and (C 31) in the Appendix). Equation (C 24) suggests that even in
the absence of viscous heating (Br → 0, i.e. c1 ≡ 0), an externally imposed thermal gra-
dient can be destabilizing if �T < 0. Note that equation (A 36) is strictly valid for
stationary disturbances. Nevertheless, as shown in figure 12(c) this scaling relationship
applies even for the time-dependent mode of instability. Specifically 1/Λ2 scales
linearly with �T for �T < 0. This should not be surprising since for time-dependent
eigensolutions, equation (C 1) is not qualitatively modified, i.e. at the critical point,
σ = 0 and σI for stationary and time-dependent modes respectively. This only changes
the numerical constants and does not qualitatively affect the mechanism of thermo-
mechanical coupling. For Dean flow, the critical disturbance is stationary for �T < 0
(see figure 10). Hence, as Br → 0 (c2 = 0), 1/Λ2 should scale linearly with �T if c3 < 0.
This is found to be the case as reported in figure 12(c).

In general, the scaling analysis suggests that for sufficiently large values of
Na (Na � ε�T and Pr cNa/(T 2

ssα
2) � 1), a power-law relationship of the form
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�T ∗ (K) p (Dean) p (Taylor–Couette)

0 0.5 0.43
0.25 0.78 0.54
0.5 0.84 0.58
1.0 1.01 0.62
1.3 1.02 0.62
1.5 1.16 0.68

Table 2. Dependence of power law exponent (p) on �T ∗.

Rec

√
δ = K Na−p , p > 0, should exist irrespective of the temporal characteristics of

the instability. Figure 13 shows a log-log plot of Rec(d/R1)
1/2 versus Na for the most

dangerous (axisymmetric) disturbance. For Na> 0.01, a power-law relationship with
p = 1/2 and 1 can be seen for �T ∗ = 0 and �T ∗ = 1 K, respectively. The value of
the exponent p depends on the imposed temperature boundary conditions. This is
evident also from table 2, where p is tabulated against �T ∗ in the range 0 to 1.5 K
for Dean and Taylor–Couette flows.
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Figure 13. Rec(d/R1)
1/2 vs. Na (log-log plot). �, R1/R2 = 0.85; �, R1/R2 = 0.912;

�, R1/R2 = 0.95. T ∗
0 = 298.15K (Dean flow).

3.4. Nonlinear stability analysis

In this subsection, we present results for the nonlinear evolution of the thermo-
mechanical instability for Dean flow by performing time-dependent simulations. The
initial condition is obtained by a superposition of the eigenfunctions associated with
the most unstable eigenvalue and the steady-state solution. It is known that for
Taylor–Couette flow (Al-Mubaiyedh et al. 2002) the bifurcation to the secondary
time-dependent state is weakly subcritical, while that to the secondary stationary
state is supercritical. However, in the case of Dean flow, the bifurcations to both the
time-dependent and stationary secondary states are found to be supercritical.

The time-dependent simulations are performed by starting from an initial condition
at a shear rate that is slightly greater than that at the bifurcation point. Two reference
temperatures, T0

∗ = 318 K and T0
∗ = 322 K are chosen to investigate stationary and

time-dependent modes respectively. Specifically, for T0
∗ =318 K and �T ∗ =0, the most

unstable mode of disturbance is stationary with αc = 3.42, γ̇c =1873.2 s−1, Rec =45.59
and Nac =0.06, where γ̇c is the shear rate corresponding to Rec = 45.59 for glycerin and
R1 = 6.946 cm as in experiments (White & Muller 2002a, b). The growth of the radial
velocity at r = (r1 +r2)/2 and z = π is plotted against time in figure 14 for γ̇ = 1905 s−1

(Re − Rec =0.81), which shows that the bifurcation results in a new stationary
solution. The bifurcation diagram, i.e. the plot of amplitude vs. Re − Rec, shows super-
critical flow transition as shown in figure 15. The inset to figure 14 shows the contour
plot of the radial velocity for the new state. For T0

∗ = 322 K and �T ∗ =1 K, time-
dependent modes are the most unstable with αc =4.57, γ̇c = 2683.15 s−1, Rec =91.60
and Nac = 0.1. The bifurcation to the time-dependent state is also supercritical as
shown in figure 16. The growth of the maximum radial velocity at r = (r1 + r2)/2 and
z = π is plotted against time in figure 16 (inset) for γ̇ = 2700 s−1 (Re − Rec = 0.62)
showing that the flow evolves into a limit cycle. The radial velocity (normalized with
respect to the maximum value) contours at points where ur |r= 1

2 (r1+r2),z=π is minimum,

zero and maximum are shown in figure 17. As in the case of the corresponding
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eigenfunctions for T2 > T1 (figure 8), the radial velocity attains its maximum value at
a location closer to the outer cylinder. Finally, we note that the time axes in figures 14
and 16 are scaled with respect to the thermal diffusion time scale, d2/αt . It can be
seen that the inception time, i.e. the transient period during which the finite-amplitude
disturbances grow towards the secondary flow state, is comparable to d2/αt .

4. Conclusions
In this work, we have investigated the influence of thermal effects on centrifugal flow

instabilities of Newtonian fluids whose viscosity is sensitive to temperature. In order to
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ascertain the role of the driving force, i.e. pressure-driven vs. drag-driven flows, Dean
and Taylor–Couette flows are considered. Even in the absence of viscous heating,
thermal sensitivity effects could be important if a temperature difference is externally
imposed across the gap. Hence we have focused on two limiting cases, namely the
role of viscous heating when both cylinders are kept at the same temperature and
that of an externally imposed thermal gradient in the absence of viscous heating. The
synergistic effect of the two sources of thermal non-homogeneity is also considered.
In addition to numerical linear stability analysis results for the onset conditions and
the spatio-temporal characteristics of the most dangerous disturbance, a simplified
model has been developed to explain the precise mechanism of thermo-mechanical
coupling. This model, together with analytical results for the base-state temperature
and velocity profiles, allow the derivation of scaling laws that relate the critical
Reynolds and Nahme numbers, the Prandtl number of the fluid and a dimensionless
parameter S which is the product of the activation energy associated with fluid
viscosity and externally imposed temperature difference.

In all cases considered, the maximum temperature difference within the gap is
small enough so that the base-state velocity profile and the distribution of angular
momentum remain practically unchanged from those in the isothermal flow. Hence,
the base-state temperature gradient is approximated as a linear superposition of the
contribution from the temperature difference imposed externally and that from viscous
heating. The maximum temperature difference considered is less than 2K. Even under
such conditions, both Dean and Taylor–Couette flows are greatly destabilized, i.e. the
onset of centrifugal instability occurs at Reynolds number values lower than that of
the isothermal flow, even for Nahme number values as small as O(10−3). This is due
to the thermo-mechanical coupling resulting from the convection of the base-state
thermal gradient by radial velocity perturbations leading to enhanced temperature
fluctuations. Specifically, it has been shown that the ratio of the magnitudes of
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thermal and radial velocity perturbations is proportional to Pe/α2 where Pe is the
Péclet number and α is the dimensionless axial wavenumber of the critical disturbance.
For high-Prandtl-number liquids, this ratio is � 1. Consequently, in the absence of
external thermal gradients, the precipitous decrease in the critical Reynolds number
occurs when Na is O(α2/Pr). Since α2 is O(10) and Pr could be O(104) for highly
thermally sensitive fluids like glycerin, this means that O(10−3) values of Na are
sufficient to cause significant flow destabilization. A scaling law of the form Λ =
[1 + Prc1Na/α2]−1/2, where c1 is a flow-dependent constant, is derived to quantify the
thermo-mechanical effect caused by viscous heating when �T = 0 where Λ denotes
the ratio of the critical Reynolds numbers for the non-isothermal and isothermal
flows.

In the absence of viscous heating, it has been found that negative values of �T have
a deleterious effect on flow stability. For instance, an order-of-magnitude reduction in
Rec is predicted when the temperature of the inner cylinder is maintained at 1◦C above
that of the outer one for Dean flow. Note that when �T < 0, the largest reduction in
viscosity occurs near the inner cylinder. Hence the radial velocity perturbations in this
region encounter relatively lower viscous dissipation. It has been shown that when
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�T < 0 and in the limit as Br → 0, Λ = [1 + Pr c2S/α2]−1/2, where c2 < 0 is a flow-
dependent constant and S ≡ ε�T . This indicates that a significant reduction in Rec

will occur when S Pr/α2 � 1, consistent with the result of the numerical linear stability
analysis. In the limit as Br → 0 with �T > 0, the influence of the external thermal
gradient on Rec is negligible. However, the critical disturbance is time-dependent and
axisymmetric compared to stationary toroidal vortex structures predicted for �T = 0.
However, viscous heating and positive values of �T still cause flow destabilization.
When �T > 0 and viscous heating is present, numerical linear stability analysis shows
that Λ ∝ Nak where k < 0 is dependent on the flow and �T .

A nonlinear stability analysis of Dean flow indicates that the bifurcation is super-
critical for both stationary (�T = 0) and time-dependent (�T > 0) modes of insta-
bilities. In comparison, in the Taylor–Couette flow, the nonlinear evolution of the
time-dependent disturbance is weakly subcritical while the stationary instability is
supercritical (Al-Mubaiyedh et al. 2002).

The authors gratefully acknowledge the financial support of this research from
NSF through Grants CTS-9874813 and CTS-0132730.

Appendix A. Constants in the perturbation base-state solution
The constants in equations (8)–(11) for Dean flow are given by

C1 =
ln(1 + δ)(1 + δ)2

δ4(δ + 2)
, C2 =

ln(1 + δ)(1 + δ)2

2δ2(δ + 2)
− ln δ

2δ
, (A 1)

C3 =
1

ln(1 + δ)

[
−C2

1δ
3(δ + 2)

4(1 + δ)2
+

(δ + 2)

16δ3
+

C1 ln(1 + δ)(2 ln δ − ln(1 + δ))

2δ

]
, (A 2)

C4 = C3 ln δ − C1

(ln δ)2

2δ
+

C2
1δ

2

4
+

1

16δ4
, (A 3)

C5 = −C1(C3 + 2C4)

2
+

2(1 + δ)2

δ3(δ + 2)

×
[
C3

1δ
4

16

(
1 − 1

(1 + δ)4

)
− (δ + 2)

64δ4
+

C1C3δ
2

2

{
ln((1 + δ)/δ)

(1 + δ)2
+ ln δ

}

+
C2

1δ

16

{
3

(1 + δ)2
− 3 +

4 ln((1 + δ)/δ)

(1 + δ)2
+ 4 ln δ +

4(ln((1 + δ)/δ))2

(1 + δ)2
− 4(ln δ)2

}

+
C1(3 ln(1 + δ) + 4(ln((1 + δ)/δ))3 + 4(ln δ)3)

48δ2

+
(2C4 ln(1 + δ) + C3(ln((1 + δ)/δ))2 − C3(ln δ)2)

4δ

]
, (A 4)

and

C6 = −C3
1δ

4

16
− 1

64δ5
+

(C1C3 + 2C1C4 − 2C1C3 ln δ + 2C5)δ
2

4

− C1 ln δ(3 + 4(ln δ)2)

48δ2
− ln δ(2C4 − C3 ln δ)

4δ
+

(3 − 4 ln δ + 4(ln δ)2)C2
1δ

16
. (A 5)
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The constants in equation (13) for Taylor–Couette flow are given by

A =
(ζ 2 + 5)(ζ 2 − 1) − 2ζ 2 ln ζ − 8 ln ζ )

4(ζ 2 − 1)3 ln ζ
, (A 6)

and

B =
−1

2(ζ 2 − 1)3
−
(

2

(ζ 2 − 1)2
− 2A ln ζ − 4 ln ζ

(ζ 2 − 1)3

)(
1

4 ln ζ

)
. (A 7)

Appendix B. Linearized governing equations
Continuity equation:

1

r

d(rûr )

dr
+ iαûz = 0. (B 1)

Radial (r) momentum equation:

Re

[
σ ûr − 2

uθss ûθ

r

]
= −∂p̂

∂r
+ eε(1/Tss−1)

×



(

− ε

T 2
ss

)
∂Tss

∂r

(
2
∂ûr

∂r

)
︸ ︷︷ ︸

V

− ûr

r2
+

1

r

∂ûr

∂r
+

∂2ûr

∂r2
− α2ûr


. (B 2)

Azimuthal (θ) momentum equation:

Re

[
σ ûθ + ûr

∂uθss

∂r
+ ûr

uθss

r

]

= eε(1/Tss−1)
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IV
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III
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 . (B 3)

Axial (z) momentum equation:

Re σ ûz = −iαp̂ +eε(1/Tss−1)



(

− ε

T 2
ss

)
∂Tss

∂r

(
∂ûz

∂r
+ iαûr

)
︸ ︷︷ ︸

V

+
1

r

∂ûz

∂r
+

∂2ûz

∂r2
− α2ûz


. (B 4)
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Energy equation:

σ T̂ + ûr

∂Tss

∂r︸ ︷︷ ︸
I

=
1

Pe

[
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∂r2
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1
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− ûθ
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ss
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(
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∂uθss

∂r
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]
︸ ︷︷ ︸

II

. (B 5)

Appendix C. Derivation of scaling laws
Since the terms containing Br/Pe are negligible (Br/Pe � 1), the linearized energy

equation can be reduced to the form

1

Pe

d2T̂

dr2
−
(

α2

Pe
+ σ

)
T̂ = ûr

dTss

dr
, (C 1)

where R1/d � r � R2/d. Note that r is O(R̄/d) where R̄ =(R1 + R2)/2 or 1/r is O(δ).
Furthermore, �r is O(1) and α2 is O(10). Hence,

α2ûr � d2ûr

dr2
. (C 2)

For a stationary mode of disturbance at the critical point, σ = 0. Also 1/Pe → 0, and
hence, equation (C 1) reduces to

T̂ = −Pe

α2

dT ss

dr
ûr . (C 3)

Alternatively, if one treats the right-hand side of equation (C 1) as a source term, then
since T̂ =0 at r = R1/d and R2/d , the homogeneous solution to (C 1) is identically
zero when σ = 0. This leads to equation (C 3).

In the momentum equation, we make the approximation exp(ε(1/Tss − 1)) ≈ 1 since
the maximum dimensionless temperature difference is O(1/T1

∗). In addition, we neglect
term V in equation (B 2) as it has very little influence on the critical conditions: see
§ 3.3. Invoking the narrow-gap approximation, equation (B 2) can be reduced to

Re

[
σ +

α2

Re

]
ûr =

2Re

r
uθss ûθ − dp̂

dr
. (C 4)

Similar approximations when applied to equation (B 4) result in

Re σ ûz = −iαp̂ − α2ûz, (C 5)

which upon re-arrangement of the terms gives

p̂ =
iRe

α

[
σ +

α2

Re

]
ûz. (C 6)

At the critical point, i.e. when σ = 0, equation (C 6) becomes

p̂ = iαûz. (C 7)
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In the narrow-gap limit, the continuity equation (B 1) reduces to

iαûz =
dûr

dr
. (C 8)

Using equations (C 7) and (C 8) in (C 4), we obtain

d2ûr

dr2
+ Re

[
σ +

α2

Re

]
ûr =

2Re

r
uθss ûθ . (C 9)

In order to eliminate ûθ from equation (C 9), we make use of the linearized
θ-momentum equation (B 3) (terms V and VI have been neglected as they have
very little influence on the critical condition: see § 3.3), i.e.

Re

[
σ +

α2

Re

]
ûθ + Re

duθss

dr
ûr = − ε

T 2
ss

[
dT̂

dr

duθss

dr
+ T̂

d2uθss

dr2

]
. (C 10)

Substituting for T̂ from (C 3) in (C 10), gives

Re

[
σ +

α2

Re

]
ûθ = −Re

duθss

dr
ûr +

ε

T 2
ss

Pe

α2

dTss

dr

[
duθss

dr

dûr

dr
+

d2uθss

dr2
ûr

]
. (C 11)

Let K ≡ εPe/(Tssα)2, Θ ′ ≡ dTss/dr , U ≡ uθss , U ′ ≡ u′
θss and U ′′ ≡ u′′

θss so that equation
(C 11) for a stationary mode of disturbance can be re-written succinctly as

α2ûθ = −ReU ′ûr + KΘ ′
[
U ′ dûr

dr
+ U ′′ûr

]
. (C 12)

Using (C 12) in (C 9) and letting σ = 0 (at critical point), we get a simplified master
equation for Dean and Taylor–Couette flows:

d2ûr

dr2
+

[
α2 +

2ReUU ′

α2r

]
ûr =

2ReUKΘ ′

α2r

[
U ′ dûr

dr
+ U ′′ûr

]
. (C 13)

Equation (C 13) is a second-order eigenvalue problem closed in ûr with homogeneous
Dirchlet boundary conditions at the cylinder walls. Note that the analytical results
for the steady-state velocity and temperature gradient presented in § 3.1 can be used
in equation (C 13). We seek a power series solution for ûr as

ûr =

∞∑
n=1

anx
n, (C 14)

where x = r − r1, 0 � x � 1. Note that a0 = 0 by virtue of the boundary condition at
x = 0. In the following subsections, we present the derivation of the scaling law for
Taylor–Couette and Dean flows respectively.

C.1. Taylor–Couette flow

Re-writing equation (C 13) in terms of x and re-arranging gives

α2x
d2ûr

dx2
+α2r1

d2ûr

dx2
+[α4x +α4r1 +2Re2UU ′]ûr =2ReUKΘ ′

[
U ′ dûr

dx
+U ′′ûr

]
. (C 15)

In the narrow-gap limit, the steady-state variables can be written as U = 1 − x and
Θ ′ = S + c1Na where c1 is assumed to be a constant for sake of simplicity.
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Substituting equation (C 14) in (C 15), we obtain

α2

∞∑
n=−1

an+2(n + 2)(n + 1)xn+1 + α2r1

∞∑
n=−2

an+3(n + 3)(n + 2)xn+1

+ α4

∞∑
n=1

anx
n+1 + α4r1

∞∑
n=0

an+1x
n+1 + 2Re2

∞∑
n=1

anx
n+1

− 2Re2

∞∑
n=0

an+1x
n+1 = 2ReKΘ ′

∞∑
n=1

anx
n+1 − 2ReKΘ ′

∞∑
n=0

an+1x
n+1. (C 16)

Collecting the coefficients of like powers of x, we get

x0 : 2α2r1a2 = 0, i.e. a2 = 0, (C 17)

x1 : (α4r1 − 2Re2 + 2ReKΘ ′)a1 + 6α2r1a3 = 0, (C 18)

x2 : (α4 + 2Re2 − 2ReKΘ ′)a1 + 6α2a3 + 12α2r1a4 = 0, (C 19)

x3 : (α4r1 − 2Re2 + 2ReKΘ ′)a3 + 12α2a4 = 0. (C 20)

The series expression in (C 14) is truncated to a cubic expression in x. Equations
(C 18)–(C 20) constitute a homogeneous set of linear equations. Therefore, in order
to obtain a non-trivial solution for the coefficients a1, a3 and a4, it is required by
Fredholm’s alternative that the determinant of the coefficient matrix must be equal
to zero, i.e.∣∣∣∣∣∣∣

α4r1 − 2Re2 + 2Re KΘ ′ 6α2r1 0

α4 + 2Re2 − 2Re KΘ ′ 6α2 12α2r1

0 α4r1 − 2Re2 + 2Re KΘ ′ 12α4

∣∣∣∣∣∣∣ = 0. (C 21)

After substituting r1 = 1/δ, K = εPe/(Tssα)2 and Θ ′ = S + c1Na in (C 21), the deter-
minant can be reduced to an expression of the form

Recδ
1/2 =

√
12α6 − δ

24α2

/[
1 − Pr

T 2
ssα

2
(S + c1Na)

]1/2

. (C 22)

Using the fact that δ � 12α6, and in the isothermal limit, equation (C 22) simplifies to
the form

Recδ
1/2 = α/

√
2 = a constant. (C 23)

Although the constant is not equal to 41 (Taylor 1923) due to the approximations
involved in the derivation, expression (C 23) conforms to the isothermal critical
condition Rec,isoδ

1/2 = a constant. Moreover, our interest is in predicting the relative
destabilization characterized by the ratio of the critical Reynolds numbers for the
non-isothermal and isothermal flows, i.e. Λ. Using equations (C 22) and (C 23), it can
be shown that

Λ =
1[

1 −
(
Pr
/
T 2

ssα
2
)
(S + c1Na)

]1/2
. (C 24)

C.2. Dean flow

The series expression for ûr from (C 14) is substituted in the master equation (C 15),
where in the narrow-gap limit, the steady-state variables can be approximately written
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as U = x(1 − x) and Θ ′ = S + c2Na where c2 is a constant, i.e. given by

α2

∞∑
n=−3

an+4(n + 4)(n + 3)xn+3 +
α2

δ

∞∑
n=−4

an+5(n + 5)(n + 4)xn+3 + α4

∞∑
n=−1

an+2x
n+3

+
α4

δ

∞∑
n=−2

an+3x
n+3 + 4Re2

∞∑
n=1

anx
n+3 − 6Re2

∞∑
n=0

an+1x
n+3 + 2Re2

∞∑
n=−1

an+2x
n+3

= 2Re KΘ ′

[
2

∞∑
n=0

an+1(n + 1)xn+3 − 3

∞∑
n=−1

an+2(n + 2)xn+3 +

∞∑
n=−2

an+3(n + 3)xn+3

− 2

∞∑
n=−1

an+2x
n+3 + 2

∞∑
n=0

an+1x
n+3

] .(C 25)

Collecting the coefficients of like powers of x, we get

x0 : 2α2r1a2 = 0, i.e. a2 = 0, (C 26)

x1 : (α4r1 − 2Re KΘ ′)a1 + 6α2r1a3 = 0, (C 27)

x2 : (α4 + 2Re2 + 10Re KΘ ′)a1 + 6α2a3 + 12α2r1a4 = 0, (C 28)

x3 : (−6Re2 − 8Re KΘ ′)a1 + (α4r1 − 6Re KΘ ′)a3 + 12α2a4 = 0. (C 29)

Once again, we truncate the series at the cubic term. Equations (C 27)–(C 29) constitute
a homogeneous set of linear equations. Therefore, the existence of non-trivial solutions
is guaranteed only if∣∣∣∣∣∣

α4r1 − 2ReKΘ ′ 6α2r1 0

α4 + 2Re2 + 10Re KΘ ′ 6α2 12α2r1

−6Re2 − 8ReKΘ ′ α4r1−6ReKΘ ′ 12α4

∣∣∣∣∣∣ = 0. (C 30)

After substituting r1 = 1/δ, K = εPe/(Tssα)2 and Θ ′ = S + c2Na in (C 30) and through
similar procedure as followed for the Taylor–Couette flow, it can be shown that

Λ =
1[

1 −
(
c3Pr
/
T 2

ssα
2
)
(S + c2Na)

]1/2
, (C 31)

where c3 is a constant. The numerical values of c2 and c3 will be determined by fitting
the above expression to numerical linear stability analysis results: see § 3.4.
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